
Browsers biggest TLS mistake

37C3 Lightning Talk Benjojo / Ben Cartwright-Cox

A good TLS server

- Sends you a certificate chain
 - The top of the certificate chain is signed by a Root CA installed in the software

A bad TLS server

- Just sends you the certificate with their domain/SAN/Name on it.
- This does not work... Unless it does?

benjojo.co.uk

Why this happens

- Most ACME and similar clients give you back 3 files
 - The "Full Chain" (You want this)
 - The Private Key (You want this)
 - The Certificate (Some software wants this, but 99% chance you do not want this file)
- People use the wrong certificate file

But this works anyway!

- Chrome and Firefox have mitigations to "fix" this from being a issue
 - Likely Safari does too but I don't like to test on Safari because it's a pain
- However the way that Chrome and Firefox go about it are different
 - Both methods give back bad vibes in terms of purity

Firefox (and friends)

- Ships with a huge list of known intermediate chains that the browser will try and use to make a chain 'work'
- Behavior is consistent, does need constant updates to ensure it works well (since intermediates change over time)

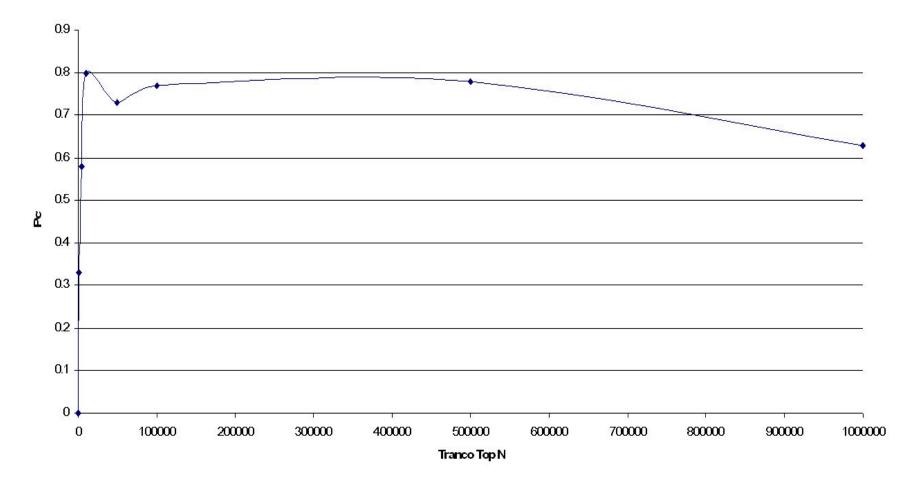
Chrome (and friends)

- When a chain comes up that does not reach a Root CA, the browser looks at all of the other TLS Cert chains it's seen, and tries to "make them fit".
- This means a "cold start" chrome does not behave the same way as a chrome that was running for 4 hours browsing the web

Can we talk about how insane that is?

Chrome's TLS validation varies based on if you just started the browser, vs have been using it for a few hours

How often is this happening?


- There is a Go library that mimics the Firefox behaviour
- We can test the Tranco 1 Million (A successor to the Alexa 1M list) and compare how many more work over TLS with said go library

Terrible Daen

Range	% Broken In Range	Cumulative Broken	Broken in Range (Between Last DP)
10	0%	0	0
100	0%	0	0
1000	0.33%	3	3
5000	0.58%	26	23
10000	0.8%	66	40
50000	0.73%	359	293
100000	0.77%	745	386
500000	0.78%	3851	3106
1000000	0.63%	7005	3154

Percent of domains with Incomplete TLS Cert Chains

- Notable examples of failures
 - playstation.com (who sends the leaf cert twice)
 - bt.com
 - (house|hhs|virginia|fdic).gov / disa.mil
- A large % of the domains who have messed up cert chains are government sites

Did we really have to do this?

 There are now TLS sites that are mostly only reachable in browsers because browsers are the only place where this hack happens consistently

- Though that might be considered a bonus by some
- Why did we open pandora's X509 box?

See the broken domain list!

https://docs.google.com/spreadsheets/d/1rbPDQQHNPR4JdWnl_DLxoHyjj8ykWuRemtLaoB4I9_4/edit?usp= sharing <- Or scan the QR code

That's all folks

You can always find me on fediverse (or email) at:

@benjojo@benjojo.co.uk